3. 3-polytopes & edge-graphs

3.1 Characterizing 3-polytopes

edge-graph of 3-cute

Def: given a polytope PCR1 ils eage-soaph Gp=(V,E) has vertex set $V := \mathcal{F}_0(P)$ and viwe V adjacent iff conv $\{v,\omega\}\in\mathcal{F}_{+}(P)$

edges of P

→ this graph looks climost like we could read the polytope from it ... can we?

MAIN QUESTIONS

- · given a graph, is it the edge-graph ot a (3-) polytope?
- · given an edge-graph, can I reconstruct the fore lattice from it?
- > Thes questions are essentially answered for 3-polytopes

Thm: (Steinitz)

G is the edge-graph of a 3-polytope iff

G is 3-connected + planor.

non-plonor

can be drawn in the plane without intersecting eases

Def: a graph on at least k+1 vertices is k-connected if deletion of any k-1 vertices yields a connected graph

Ex: 0 1-connected = connected

1- connected but not 2- connected

2-connected but not 3-connected

Proof: (of Steinitz)

=>: start from a 3-polytope PCR3. Then Gp is

• 3-connected: see section 3.2.

we use a structure theorem
 for 3-connected planer graphs
 (see 2iesler section 4.3)

Thm. Every 3-connected planer sreph can be transfermed into Ky using reduced <u>UY-and YD-transforms</u>.

Idea:

- every 3-connected planor graph can be obtained from Ky using "inverted reduced ΔΥ- and ΥΔ-trafos".
- · Ky is an edge-supp of a 3-polytope:

- can we perform the "inverted reduced trafos" on the polytopes as well? Yes (see below)
- BUT: an "inverted reduced trate" can have more than one result!

Inverse of ΔY :

→ cut off a vertex of degree 3

-> remove a facet-defining helfspace from H-representation

 \mathbb{I} .

皿.

顶.

⇒ every 3-connected planar graph

15 the edge-Sroph of a 3-polytape!

口

Extensions: there always exists a 3-polytope ...

- with all vertices and normal vectors beeing rational
- · being maximolly symmetric
 - = as symmetric as the edge-graph
- one face of which can be arbitrarily prescribed
- · which has on edge in-sphere
 - := a spnere that toucher each edge (cononical polyhedron)

There is a quick way to tell the facer from the edge-graph.

Thm: (Tutte)

A cycle CSGp corresponds to a face of P iff C is non-separating and induced.

3.2 Edge-graphs of higher-dimonsional polytopes

- The edge-graph has worked so well as a bool to understand 3-polytopes.
- · Does it work as well for higher-dimensional polytopes?
 - -> as for as we know NO :(
 - -> eage graph seems to tell little in dim 24
 - \rightarrow little is known about the structure of ease-graphs in drm ≥ 4
- · We discuss some of the few things that are known

Imm: (Balinski)

The edge-graph of a d-polytope is d-connected Proof:

- (ix d-polytope PCR^d and d-1 vertices $X_1,...,X_{d-1} \in \mathcal{F}_0(P)$
 - \rightarrow we need to snow: $G_p \{x_1, ..., x_{d-1}\}$ is connected
- · fix arbitrary other vertex xd & Fo(P)
- · there exists a unique hyperplene H through x,...,xd with normal vector CERd
- let f (resp.f) be the top (resp. bottom) face of P w.r.t. the direction C

• it remains to show (*)

- · suppose f, f ¢ H
- we show (*):
 every resex above (or in)
 H has a path to f
- · likewise below H
- o also: f, f have connected edge-graphs (by induction)
- → connectivity of $G_p = \{x_1, ..., x_{\alpha-1}\}$ follows

 Ex: what if $\{c, H, ?\}$
- W.1.0.g. we show that every vertex y E Fo(P) above (or in) H has an edge "going upwards"
- We use vertex cones: Given a vertex $y \in F_0(P)$, let $y_1, ..., y_r \in F_0(P)$ be its neighbors in G_P . Let $v_i := y_i y$ be the directions of edges emanating from y.

Then: Pc y+ cone {v1,...,vr} Ex: prove this.

cone $\{v_1,...,v_r\} := \{ \mathbb{Z}_{a_i}v_i \mid a_i \ge 0 \}$... cone sponned by the v_i

· if no edge from y is pointing "upwards"...

... then the come at y contains no points "above y".

Since Pis in the cone, y must already be at the top. \[\square

(all of this is pretty straight forward if you know about the simplex algorithm

Conseduences:

- o edge-graphs are connected
- · minimum degree of edge-graph of d-poly, is ≥d > # edges incident to vertex
- -> polytopes with the minimal desree everywhere have special significance
- Def: A d-polytope is simple if the edge-graph is d-regular := every vertex degree is d.
 - F.g. d-cube and d-simplex are simple d-crosspolytope only for d = 2

Ex: focas of simple polytoper are simple.

• There exists a dual notion to simplicity

Def: A polytope is simplicial if every facet

is a simplex. Ex: every face is a simplex

E.g. d-crosspolylope and d-simplex are simplicial d-cube only for d≤2

<u>Ex</u>: polar duals of simple polytopes are simplicial and vice versa.

Ex: only polylope
Which is both
simple and
simplicial is
simplex

- e simple/simplicial polytoper are important because they are genenic:
 - choose some random points in \mathbb{R}^{d} ; their convex hull is simplicial with probability 1 (because prob. that more than d points lie in a facet defining hyperplane = 0)
 - choose some random halfspaces of Rd;
 their intersection (if bounded) is simple w.p. 1
 (because prob. that more than d hyperplaner
 intersect at a common point = 0)

We will see:

e ease-graph contains a lot information for simple polytopes, but almost none for simplicial

3.3 Neighborly and cyclic polytopes

- simplices have a very special edge-graph:

 any two vertices are adjacent —> Kn
- Q: Can there be other polytopes complete graph with complete edge-graph?
 - NO in dimension 3 $\frac{E_X}{E_X}$: show using V-E+F=2
 - surprisingly YES in dimension ≥ 4; in fact, a "random combinatorial type" has complete eagle-graph with probability → 1.

Def: A polytope is k-neighborly if any $\leq k$ vertices form a face.

- · 1. neighborly means nothing (every vertex is a face)
- 2-neighborly = edge-graph is complete = often just "neighborly"
- · We discuss the most famour class of neighborly polytopes
- Def: The moment curve is the curve $x: \mathbb{R} \to \mathbb{R}^d$ with $x(t) := \{t, t^2, ..., t^d\}$
 - for $t_1 < t_2 < \cdots < t_n$, the cyclic polytope of dimension of with n vertices $(n \ge d+1)$ is $C_d(n) := conv \{x(t_i) \mid i \in [n]\}$

→ We shall see: combinatorial type is independent of the choice of the ti

Lem: Cyclic polytopes are simplicial.

$$\det \begin{pmatrix} 1 & 1 \\ x(S_0) & x(S_{cd}) \end{pmatrix} = \det \begin{pmatrix} 1 & 1 \\ S_0 & S_{cd} \\ S_0^2 & \dots & S_{cd}^2 \\ \vdots & \vdots & \vdots \\ S_0^{cd} & S_0^{cd} \end{pmatrix}$$
Vandermonde

identity

$$= \left| \left| \left(S_i - S_j \right) \right|$$

$$0 \le i < j \le a$$

+ 0 if all s; are distinct

d+1

- no dt1 distinct points on the moment curve are on the same hyporplane
- ⇒ a facet can contain at most d points

 (d-1) simplex

- \rightarrow an algorithm to find out which subsets $S \subset [n]$ with |S| = a form a facet of $C_a(n)$.
- 1) write s as a characteristic vector

$$\chi_{S} = (100110001001111)$$

$$= (123456785101112131415)$$

$$= (1001100010011111)$$

$$= (1001100010011111)$$

$$= (1001100010011111)$$

$$= (1001100010011111)$$

2) $F := conv \{x(t_i) | i \in S \}$ is a facet of $C_d(n)$ iff all inner blocks of S are of even size.

- e let Hs be the unique hyperplane through the x(ti), ies.
- e we can write

$$H_{S} = \left\{ \times \in \mathbb{R}^{d} \mid F_{S}(x) = 0 \right\}$$
with $F_{S}(x) := \left(\begin{array}{ccc} 1 & 1 & \dots & 1 \\ x & x(t_{i_{0}}) & \dots & x(t_{i_{d}}) \end{array} \right)$ Note: linear

of consecutive vertices,

linear functional

no two vertices can be

on different vides of Hs.

-> knowing all facets it is not hard to derive all other faces

Thm: Cd(n) is [d/2] - neighborly.

Proof idea: (not contained in the lecture)

- · choose any subset SC (n) of size La/2]
- show that one can always embed S in a larger set \$\overline{S}\$ of size of with no odd inner blocks.
- → s is a facet, nence a simplex
- -> S is a face of this simplex, hence a face of Ca(n).

口

Remarks:

• this is as neighborly as a palytope can become without being a simplex:

P is > $\lfloor \frac{d}{2} \rfloor$ - neighborly \longrightarrow P = simplex (proof: next week)

- $C_{cl}(n)$ cannot be distinguished from a simplex by its $\lfloor d/2 \rfloor$ skeleton := poset of faces up to dimension $\lfloor d/2 \rfloor$
- if d=3 then $\lfloor d/2 \rfloor = 1$

-> 1- neighborly means nothing

3.4. Reconstruction from edge-graphs and skeleta

- we have seen that a general polytope (i.e. its combinatorial type) cannot be reconstructed from the odge-graph or even the [d/2]-skeleton
- not even the dimension can be recomptructed!!

 $C_4(7)$ and 6-simplex have same graph 4-dimensional 6-dimensional K_7

OTHER RESULTS:

- reconstruction is always possible

 from (d-1)- or (d-2)-skeleton.

 (clossic) (by Margaret Bayer)
- reconstruction not possible from (d-3)-skeleton.

Thm: (Blind & Mani; proof by Kalai)
"Kalai's simple way to lell a simple polytope
from its graph"

If P,Q c Rd are simple with the same edge-graph, then P,Q are combinatorially equiv.

Proof idea: (not contained in the lecture)

We find a combinatorial criterion for when a subset

of verticer forms a face (cf. Tutter crit. for 3-poly.)

- · consider acyclic orientations of the eage-graph. no directed cycles
- · for orientation O set

- o an acyclic orientation is good if it minimizes ho+2ho+4ho+ ... + 2dho.
- · a connected regular subgraph HSGp belongs to a face iff it is terminal wirt some good orientation no edge leading out of it.

Remarks :

- e reconstruction also possible with up to 2 non-simple vertices

 but not with 3 non-simple vertices

 Doolittle
- Kalai's proof computationally inefficient but better algorithms exist.
- · Known techniques cannot be used to tell whether a regular graph belongs to a simple polytope

OPEN: Con this question be decided efficiently?